Pluronic p85 block copolymer enhances opioid peptide analgesia.

نویسندگان

  • Ken A Witt
  • Jason D Huber
  • Richard D Egleton
  • Thomas P Davis
چکیده

Peptide-based drug development is a rapidly growing field within pharmaceutical research. Nevertheless, peptides have found limited clinical use due to several physiological and pathological factors. Pluronic block copolymers represent a growing technology with the potential to enhance efficacy of peptide therapeutics. This investigation assesses Pluronic P85 (P85) and its potential to enhance opioid peptide analgesia. Two opioid peptides, [D-Pen(2),D-Pen(5)]-enkephalin (DPDPE) and biphalin, were examined as to the benefits of P85 coadministration, above (1.0%) and below (0.01%) the critical micelle concentration, with morphine as a nonpeptide control. P85 was examined in vitro to assess blood-brain barrier uptake in association with P-glycoprotein effect, DPDPE and morphine being P-glycoprotein substrates. P85 coadministration with DPDPE and biphalin showed increased (p < 0.01) analgesia with both 0.01 and 1.0% P85. Morphine showed increased (p < 0.01) analgesia with 0.01% P85 only. This increase in analgesia is due to both an increase in peak effect, as well as a prolongation of effect. P85 increased cellular uptake of (125)I-DPDPE and [(3)H]morphine at 0.01% (p < 0.01) and 1.0% (p < 0.01 and p < 0.05, respectively). Cyclosporin-A coadministration with (125)I-DPDPE and [(3)H]morphine increased cellular uptake (p < 0.01 and p < 0.05, respectively). (125)I-DPDPE and [(3)H]morphine coadministered with 0.01% P85 and cyclosporin-A increased cellular uptake compared with control (p < 0.01) and compared with cyclosporin-A coadministration without P85 (p < 0.01 and p < 0.05, respectively). This indicates that, in addition to P-gp inhibition, 0.01% P85 increased (125)I-DPDPE and [(3)H]morphine uptake. In our examination, we determined that P85 enhanced the analgesic profile of biphalin, DPDPE, and morphine, both above and below the critical micelle concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies.

Drug delivery across the blood-brain barrier is limited by several mechanisms. One important mechanism is drug efflux, mediated by several transport proteins, including P-glycoprotein. The goal of this work was to examine the effect of a novel drug delivery system, Pluronic block copolymer P85, on P-glycoprotein-mediated efflux from the brain using in vitro and in vivo methods. The hypothesis w...

متن کامل

Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization.

Pluronic block copolymer, P85, inhibits the P-glycoprotein (Pgp) drug efflux system and increases the permeability of a broad spectrum of drugs in the blood-brain barrier (BBB). This study examines the mechanisms by which P85 inhibits Pgp using bovine brain microvessel endothelial cells (BBMEC) as an in vitro model of the BBB. The hypothesis was that simultaneous alterations in intracellular AT...

متن کامل

Synthesis and Complexation Behavior of Pluronic-b- Poly(acrylic Acid) Copolymer with Doxorubicin

Poly(acrylic acid) (PAA) was attached on both termini of Pluronic P85 copolymer (EO27PO39EO27)) via atom transfer radical polymerization (ATRP) to produce a novel block copolymer, PAA-b-P85-b-PAA (P85PAA). The P85PAA-DOX complex formation and drug loading were strongly dependent on the PAA segment and pH, where the protonation of the carboxyl groups in the PAA segment at pH<7.2 reduced the bind...

متن کامل

Nimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies

Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...

متن کامل

Nimodipine-Loaded Pluronic Block Copolymer Micelles: Preparation, Characterization, In Vitro and In Vivo Studies

Nimodipine (NM), as a lipophilic calcium channel blocker indicated for the prevention and treatment of neurological disorders, suffers from an extensive first pass metabolism, resulting in low oral bioavailability. Polymeric micelles, self-assembled from amphiphilic polymers, have a core-shell structure which makes them unique nano-carriers with excellent performance as drug delivery. This inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 303 2  شماره 

صفحات  -

تاریخ انتشار 2002